
Puget Sound Sediment Reference Material: Guidance and Procedures

Introduction

The Puget Sound Sediment Reference Material (SRM) was prepared from marine sediment collected from Puget Sound. The SRM was developed to assess measurement accuracy and evaluate laboratory performance when analyzing low-level chlorinated dioxins and furans (D/F), and polychlorinated biphenyl (PCB) compounds in sediment samples collected in the Pacific Northwest. The SRM is available free of charge through the agency providing project oversight, though recipients or requestors must pay shipping costs. This document provides instructions for acquisition, analysis, validation, and reporting on the SRM. The guidance and procedures outlined here ensure that all SRM users agree to:

- Submit request form to the appropriate agency contacts
- Use approved methods for analysis
- Verify and validate SRM results
- Report methods used for analysis and quality assurance (QA) / quality control (QC) procedures
- Provide results for inclusion in periodic recalculations of acceptance limits

Acquisition

- 1. From the <u>DMMO website</u>, download the <u>SRM request form</u>.
- 2. Complete the form and submit to the <u>agency contact</u>.
- 3. The agency contact reviews, approves, and submits to the EPA Region 10 SRM Manager for processing. Requests are typically processed within a week.

Agency Contacts

The Seattle District US Army Corps of Engineers Dredged Material Management Office (DMMO), Washington Department of Ecology, Washington Department of Natural Resources, and US EPA Region 10 have staff assigned to distribute the SRM in support of agency missions, including regulatory programs. Agency contacts (listed in Table 1) have the authority to review and approve SRM requests and the responsibility to coordinate with and report results to EPA's SRM Manager. Additionally, agency contacts are available to help with any questions about the request form.

Name	Phone Number	Email									
US Army Corps of Engineers, l	US Army Corps of Engineers, Dredged Materials Management Office (DMMO), Seattle										
District	District										
Joy Dunay	(206) 764 - 6083	joy.m.dunay@usace.army.mil									
Kelsey van der Elst	(206) 764 - 6945	kelsey.vanderelst@usace.army.mil									
Brian Hester	(206) 764 - 6175	brian.w.hester@usace.army.mil									
Washington Department of Eco	ology										
Laura Inouye	(360) 515-8213	lino461@ecy.wa.gov									
Washington Department of Nat	tural Resources										
Shannon Soto	(360) 999 - 8094	shannon.soto@dnr.wa.gov									
US Environmental Protection A	Agency, Region 10										
Sarah Burgess	(206) 553 - 6698	burgess.sarah@epa.gov									
Whitney Conard	(206) 553 – 0692	conard.whitney@epa.gov									
Madi Novak	(503) 326 – 3277	novak.elisabeth@epa.gov									
Gerald Dodo, Region 10 Lab	(360) 871 – 8728	dodo.gerald@epa.gov									
Supervisor											
Cindy Fields, QA Manager	(206) 553 – 1893	fields.cindy@epa.gov									
Raymond Wu, SRM Manager	(206) 553 – 1413	wu.raymond@epa.gov									

Table 1. Agency Contacts

Example Request Processes

- 1. Clean Water Act Section 404 permit applicants for discharge of dredged or fill material would submit the completed request form to the Seattle District Corps of Engineers DMMO contact.
- 2. A contractor performing work under CERCLA for Superfund sites would submit the completed request form to the EPA Remedial Project Manager who would then submit to an EPA contact.
- 3. Projects supporting Washington's ambient sediment monitoring program would submit the completed request form to the Ecology contact.
- 4. Projects involving sediment sampling at locations with sub-tidal lease authorizations from the Washington Department of Natural Resources (WDNR) would submit the completed request form to the WDNR contact.

Shipping

The SRM is stored at the US EPA Region 10 Manchester Environmental Laboratory (MEL) in Port Orchard, Washington. SRM recipients listed on the request form should be prepared to confirm shipping details (including UPS or FedEx account number) if contacted by MEL. When the SRM has been shipped, MEL notifies the EPA Region 10 SRM Manager, the authorized agency contact indicated on the request form, and the destination laboratory. All emails must include the project name as indicated on the request form. The SRM will arrive with specific instructions on handling and storage, data reporting, and chain of custody paperwork.

Storage

The SRM could contain compounds that are light sensitive and should be protected from light during storage. Store the SRM at ≤ 6 °C, preferably at < 0°C, until SRM preparation and analysis is to occur. Allow the bottle(s) to reach ambient temperature before opening.

The DMMP allows previously opened SRM bottles to continue to be used if the bottle has been securely stored per the handling and storage requirements. Users must make careful note of the <u>bottle</u> <u>number</u>, and ensure it is reported, along with all other required deliverables as outlined in the Reporting section below.

Analysis

Acceptance limits have been established for the SRM for D/F and/or PCB congener analysis using high resolution gas chromatography / high resolution mass spectrometry (HRGC/HRMS) methods. The SRM may be suitable for Aroclor 1260 analysis using gas chromatography/electron capture detection (GC/ECD) methods. Given that the SRM only has an acceptance limit for one Aroclor mixture, it may not be suitable for all projects performing primarily Aroclor investigations. Acceptance limits for emerging contaminants of concern, such as per-and polyfluoroalkyl substances (PFAS), may be available in the future. Current acceptance limits for D/F and PCB congeners are included in the appendix.

Methods to be used must be clearly defined in the quality assurance project plan or sampling and analysis plan approved by the appropriate agencies. Preferred analytical methods are described in the <u>DMMP User Manual</u>, which is available on the DMMO website.

Data Validation

SRM users may be held to different data validation requirements, depending on their program and project circumstances. Data must be validated to a minimum of EPA Stage 2B, per DMMP User Manual recommendations. Data validation stages are described in *Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use* (EPA 2009). Any validation narrative must indicate the validation stage used.

Reporting

The original SRM requester is responsible for ensuring that all information relative to the SRM, including associated QC sample results and an electronic data deliverable (EDD) containing validated data, is sent to the agency contact. It is the responsibility of the agency contact to submit all project data and validation reports to the EPA Region 10 SRM Manager.

For SRM data meeting established QC requirements, the agency contact will submit the validated EDD, Level 2 laboratory reports containing SRM results and associated QC sample results, and the validation reports relevant to the SRM to the EPA Region 10 SRM Manager. Changes made by the data validator (e.g., modification of data qualifiers) must be clearly indicated in the EDD and validation report.

The following are the minimum required deliverables for SRM data submissions. Also included below are optional deliverables that may or may not be needed depending on the available deliverables.

Required Deliverables

The required deliverables should be provided by the original SRM requester to the agency contact who will share this with the EPA Region 10 SRM Manager. The project name and SRM bottle number should be included in the email subject line.

- 1. **SRM Sample Data Summary Report** either a Level 2 laboratory report, or a Contract Laboratory Program Form 1, providing a summary of the analytical parameters, analytical results, reporting limits, and laboratory qualifiers. At a minimum, the sample data summary report should include the following:
 - Identification and quantitation of target analytes including dilution and reanalysis
 - CAS numbers
 - Laboratory name
 - Project number
 - Project name
 - Sample ID number (SRM bottle bar code)
 - Agency sample number (if applicable)
 - Laboratory sample number
 - Date SRM received by the lab

- Date and time of analysis
- For PCB Aroclor data, laboratory reporting limits and method detection limits
- For PCB Congener and D/F data, laboratory reporting limits and estimated detection limits
- Laboratory qualifiers and definitions
- 2. **Data Validation Report** report that documents the analytical quality of the SRM data. This report confirms that data validation was completed to at least an EPA Stage 2B, per DMMP User Manual recommendations. The report documents the reasons for any failure to meet method, procedural, or contractual requirements, and provides an evaluation of the impact of such failure on the overall data set.
- 3. Validated Electronic Data Deliverable (EDD) an electronic, tabular format for sharing, manipulating, and using the data. EDDs should be submitted in Ecology's EIM format.

Optional Deliverables

Laboratory Case Narrative – laboratory report narrative that describes the analytical process used to analyze the samples and any problems encountered in processing the samples, along with corrective action taken and problem resolution. The case narrative should be submitted with the SRM data if there were significant problems during sample analysis that affected the SRM or if there are other observations relevant to the SRM.

Raw Data – laboratory worksheets, records, notes, or instrument printouts that are the result of original observations and activities. The chromatograms and integration reports associated with the SRM should be submitted with the SRM Sample Data Summary Report, if possible.

Data Package – the entire laboratory package including all narratives, sample summary reports, QC reports, calibrations, and raw data. The full data package should only be submitted if there were significant QC failures that affect the SRM result or if the data did not go through the data validation process.

References

- US Environmental Protection Agency (USEPA). 2009. Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use, EPA-540-R-08-005.
- Strout, K. 2013. Development and Production of the Puget Sound Sediment Reference Material SR0431.
- Strout, K. 2023. Development and Production of the Puget Sound Sediment Reference Material SR0431 Advisory Control Limits Update.

Acceptance Limit Assessment

In 2013, lab round-robin analyses of the SRM for PCB Aroclor 1260 and D/F established an initial acceptance limit for each compound (Strout 2013). In 2023, the Quality Assurance Technical Support

(QATS) Laboratory (Las Vegas, Nevada) recalculated advisory control limits by combining the initial 2013 study data with new data that have become available through projects in the Pacific Northwest. A total of 92 PCB Aroclor and 76 D/F samples were used for statistical processing (Strout 2023).

The DMMP reviews data results and reports on a case-by-case basis and considers new values shared from regional projects as advisory. For each individual project, the implications associated with not meeting acceptance limits should be determined by data reviewers on a case-by-case basis and based on the goals of each program/project.

PCB Aroclors

The updated 2023 acceptance limits for Aroclor 1260 were calculated with 99% confidence interval around an updated <u>average of 113 μ g/kg</u> resulting in <u>advisory control limits of 62 μ g/kg (low) to 164 μ g/kg (high).</u>

Dioxins and Furans

The updated 2023 advisory control limits are based on the 99% confidence interval around the average results (Table 2). The updated 2023 advisory control limits have a higher degree of statistical defensibility than the 2013 advisory control limits that were set using arbitrary advisory control limits based on \pm 50% around the average results.

D/F Target Analyte		Average	Advisory Control Limits* (ng/kg)	
	CAS	Concentration	Low	High
	Number	(ng/kg)		
2,3,7,8-TCDD	1746-01-6	1.04	0.671	1.42
1,2,3,7,8-PeCDD	40321-76-4	1.17	0.562	1.79
1,2,3,4,7,8-HxCDD	39227-28-6	1.51	0.844	2.17
1,2,3,6,7,8-HxCDD	67653-85-7	3.95	2.48	5.42
1,2,3,7,8,9-HxCDD	19408-74-3	2.92	1.85	3.99
1,2,3,4,6,7,8-HpCDD	35822-46-9	103	76.3	129
OCDD	3268-87-9	888	584	1190
2,3,7,8-TCDF	51207-31-9	0.917	0.505	1.33
1,2,3,7,8-PeCDF	57117-41-6	1.10	0.510	1.69
2,3,4,7,8-PeCDF	57117-31-4	0.915	0.421	1.41
1,2,3,4,7,8-HxCDF	70648-26-9	2.95	1.88	4.01
1,2,3,6,7,8-HxCDF	57117-44-9	1.04	0.457	1.61
1,2,3,7,8,9-HxCDF	72918-21-9	0.604	NL	1.24
2,3,4,6,7,8-HxCDF	60851-34-5	1.83	0.655	3.01
1,2,3,4,6,7,8-HpCDF	67562-39-4	19.8	14.2	25.3
1,2,3,4,7,8,9-HpCDF	55673-89-7	1.65	0.957	2.35
OCDF	39001-02-0	60.9	30.1	91.7

Table 2. Advisory Control Limits - D/F Analytes

*The 2023 Advisory Control Limits for 2,3,7,8-chlorinated D/F analytes are based on updated results and associated statistics using the 99% confidence interval around the average concentrations. The data used to calculate these limits includes the 2013 and 2023 data.

PCB Congeners

In 2023, no updates were made to PCB congener acceptance limits. In 2013, a ten-lab round-robin testing of the SRM was used to calculate an acceptance limit of $\pm 50\%$ action low and action high for each congener. Table 3 contains individually eluting PCB congener acceptance limits while Table 4 contains co-eluting congeners acceptance limits. Co-eluting congeners may vary from those listed in Table 4.

Congonor		Chlorine	Avg	SD	Acceptance Low	Acceptance High
Congener Number	Target Analyte	Level*		ng/kg	dry weight	
1	2-Chlorobiphenyl	1	23	2.6	12	35
3	4-Chlorobiphenyl	1	25	8.4	13	38
4	2,2'-Dichlorobiphenyl	2	114	16.5	57	171
6	2,3'-Dichlorobiphenyl	2	169	30.4	85	254
7	2,4-Dichlorobiphenyl	2	17	3.3	8	25
8	2,4'-Dichlorobiphenyl	2	366	65.5	183	548
9	2,5-Dichlorobiphenyl	2	20	4.0	10	29
11	3,3'-Dichlorobiphenyl	2	74	10.5	37	110
15	4,4'-Dichlorobiphenyl	2	308	36.5	154	462
16	2,2',3-Trichlorobiphenyl	3	212	21.3	106	318
17	2,2',4-Trichlorobiphenyl	3	363	31.7	182	545
19	2,2',6-Trichlorobiphenyl	3	68	9.7	34	102
22	2,3,4'-Trichlorobiphenyl	3	385	47.8	192	577
25	2,3',4-Trichlorobiphenyl	3	245	34.8	122	367
27	2,3',6-Trichlorobiphenyl	3	81	6.5	40	121
31	2,4',5-Trichlorobiphenyl	3	1132	113.8	566	1697
32	2,4',6-Trichlorobiphenyl	3	237	30.9	118	355
35	3,3',4-Trichlorobiphenyl	3	26	4.3	13	39
37	3,4,4'-Trichlorobiphenyl	3	355	44.7	178	533
42	2,2',3,4'-Tetrachlorobiphenyl	4	413	55.9	206	619
46	2,2',3,6'-Tetrachlorobiphenyl	4	75	11.8	37	112
48	2,2',4,5-Tetrachlorobiphenyl	4	246	44.4	123	369
52	2,2',5,5'-Tetrachlorobiphenyl	4	3743	447.6	1871	5614
56	2,3,3',4'-Tetrachlorobiphenyl	4	651	139.8	326	977
60	2,3,4,4'-Tetrachlorobiphenyl	4	253	124.4	126	379
63	2,3,4',5-Tetrachlorobiphenyl	4	59	11.4	30	89
64	2,3,4',6-Tetrachlorobiphenyl	4	659	81.3	329	988
66	2,3',4,4'-Tetrachlorobiphenyl	4	1654	301.0	827	2481
67	2,3',4,5-Tetrachlorobiphenyl	4	56	10.2	28	84
68	2,3',4,5'-Tetrachlorobiphenyl	4	22	4.9	11	34

Table 3. Individually Eluting PCB Congeners

ä		Chloring	Avg	SD	Acceptance Low	Acceptance High	
Congener Number	Target Analyte	Chlorine Level*		ng/kg	dry weight		
72	2,3',5,5'-Tetrachlorobiphenyl	4	37	7.5	19	56	
77	3,3',4,4'-Tetrachlorobiphenyl	4	135	19.3	68	203	
82	2,2',3,3',4-Pentachlorobiphenyl	5	486	33.3	243	729	
84	2,2',3,3',6-Pentachlorobiphenyl	5	1327	31.5	664	1991	
92	2,2',3,5,5'-Pentachlorobiphenyl	5	1180	72.1	590	1770	
94	2,2',3,5,6'-Pentachlorobiphenyl	5	20	1.6	10	30	
96	2,2',3,6,6'-Pentachlorobiphenyl	5	29	2.0	14	43	
103	2,2',4,5',6-Pentachlorobiphenyl	5	57	3.5	28	85	
114	2,3,4,4',5-Pentachlorobiphenyl	5	68	8.2	34	102	
118	2,3',4,4',5-Pentachlorobiphenyl	5	4021	764.9	2011	6032	
120	2,3',4,5,5'-Pentachlorobiphenyl	5	19	2.3	9	28	
122	2,3,3',4',5'-Pentachlorobiphenyl	5	44	10.0	22	66	
123	2,3',4,4',5'-Pentachlorobiphenyl	5	54	6.1	27	81	
130	2,2',3,3',4,5'-Hexachlorobiphenyl	6	591	50.9	296	887	
131	2,2',3,3',4,6-Hexachlorobiphenyl	6	116	14.0	58	174	
132	2,2',3,3',4,6'-Hexachlorobiphenyl	6	4569	582.7	2284	6853	
133	2,2',3,3',5,5'-Hexachlorobiphenyl	6	179	15.8	90	269	
136	2,2',3,3',6,6'-Hexachlorobiphenyl	6	2141	280.2	1071	3212	
137	2,2',3,4,4',5-Hexachlorobiphenyl	6	223	29.6	112	335	
141	2,2',3,4,5,5'-Hexachlorobiphenyl	6	3657	395.7	1829	5486	
144	2,2',3,4,5',6-Hexachlorobiphenyl	6	862	57.7	431	1293	
146	2,2',3,4',5,5'-Hexachlorobiphenyl	6	2029	303.2	1014	3043	
158	2,3,3',4,4',6-Hexachlorobiphenyl	6	1257	132.4	628	1885	
159	2,3,3',4,5,5'-Hexachlorobiphenyl	6	239	81.5	119	358	
164	2,3,3',4',5',6-Hexachlorobiphenyl	6	1068	118.1	534	1602	
167	2,3',4,4',5,5'-Hexachlorobiphenyl	6	367	14.4	184	551	
170	2,2',3,3',4,4',5-Heptachlorobiphenyl	7	5251	715.7	2626	7877	
172	2,2',3,3',4,5,5'-Heptachlorobiphenyl	7	903	206.0	452	1355	
174	2,2',3,3',4,5,6'-Heptachlorobiphenyl	7	6604	1100.6	3302	9906	
175	2,2',3,3',4,5',6-Heptachlorobiphenyl	7	249	29.0	125	374	
176	2,2',3,3',4,6,6'-Heptachlorobiphenyl	7	806	95.6	403	1209	
177	2,2',3,3',4,5',6'-Heptachlorobipheny	7	3630	471.6	1815	5445	
178	2,2',3,3',5,5',6-Heptachlorobiphenyl	7	1237	194.2	619	1856	
179	2,2',3,3',5,6,6'-Heptachlorobiphenyl	7	2719	293.5	1359	4078	
187	2,2',3,4',5,5',6-Heptachlorobiphenyl	7	7316	1289.5	3658	10974	
189	2,3,3',4,4',5,5'-Heptachlorobiphenyl	7	185	11.1	93	278	
190	2,3,3',4,4',5,6-Heptachlorobiphenyl	7	1077	200.7	539	1616	
191	2,3,3',4,4',5',6-Heptachlorobiphenyl	7	217	40.6	108	325	
194	2,2',3,3',4,4',5,5'-Octachlorobiphenyl	8	2624	391.8	1312	3936	
195	2,2',3,3',4,4',5,6-Octachlorobiphenyl	8	1169	163.2	585	1754	
196	2,2',3,3',4,4',5,6'-Octachlorobiphenyl	8	1579	183.8	789	2368	
201	2,2',3,3',4,5',6,6'-Octachlorobiphenyl	8	373	65.6	187	560	
202	2,2',3,3',5,5',6,6'-Octachlorobiphenyl	8	487	51.9	243	730	
203	2,2',3,4,4',5,5',6-Octachlorobiphenyl	8	1829	354.3	914	2743	

~		Chloring	Avg	SD	Acceptance Low	Acceptance High
Congener Number	Target Analyte	Chlorine Level*		ng/kg	dry weight	
205	2,3,3',4,4',5,5',6-Octachlorobiphenyl	8	143	9.2	71	214
206	2,2',3,3',4,4',5,5',6- Nonachlorobiphenyl	9	575	39.2	288	863
207	2,2',3,3',4,4',5,6,6'- Nonachlorobiphenyl	9	91	18.6	46	137
208	2,2',3,3',4,5,5',6,6'- Nonachlorobiphenyl	9	124	7.5	62	186
209	Decachlorobiphenyl	10	97	4.4	48	145

* number of chlorine substituents

1 able 4. (Co-eluting PCB Congeners						
Congener		Cl	Avg	SD	Acceptance Low (-50%)	Acceptance High (+150%)	
Number	Co-eluting Pairs	Level*	ng/kg	g dry we	bight		Co-eluting Sets
12	3,4-Dichlorobiphenyl	2					
13	3,4'-Dichlorobiphenyl	2	70	9.3	35	105	12/13
18	2,2',5-Trichlorobiphenyl	3					
30	2,4,6-Trichlorobiphenyl	3	615	78.3	307	922	18/30
20	2,3,3'-Trichlorobiphenyl	3					
28	2,4,4'-Trichlorobiphenyl	3	1436	149.8	718	2154	20/28
21	2,3,4-Trichlorobiphenyl	3					
23	2,3,5-Trichlorobiphenyl	3	545	49.8	273	818	21/23
26	2,3',5-Trichlorobiphenyl	3					
29	2,4,5-Trichlorobiphenyl	3	506	47.9	253	759	26/29
40	2,2',3,3'-Tetrachlorobiphenyl	4					
41	2,2',3,4-Tetrachlorobiphenyl	4					
71	2,3',4',6-Tetrachlorobiphenyl	4	717	125.8	359	1076	40/41/71
44	2,2',3,5'-Tetrachlorobiphenyl	4					
47	2,2',4,4'-Tetrachlorobiphenyl	4					
65	2,3,5,6-Tetrachlorobiphenyl	4	2026	194.2	1013	3039	44/47/65
45	2,2',3,6-Tetrachlorobiphenyl	4					
51	2,2',4,6'-Tetrachlorobiphenyl	4	224	37.0	112	336	45/51
49	2,2',4,5'-Tetrachlorobiphenyl	4					
69	2,3',4,6-Tetrachlorobiphenyl	4	1550	185.4	775	2325	49/69
50	2,2',4,6-Tetrachlorobiphenyl	4					
53	2,2',5,6'-Tetrachlorobiphenyl	4	242	35.5	121	363	50/53
59	2,3,3',6-Tetrachlorobiphenyl	4					
62	2,3,4,6-Tetrachlorobiphenyl	4					
75	2,4,4',6-Tetrachlorobiphenyl	4	142	22.5	71	213	59/62/75
61	2,3,4,5-Tetrachlorobiphenyl	4					
70	2,3',4',5-Tetrachlorobiphenyl	4					

Table 4. Co-eluting PCB Congeners

			Avg	SD	Acceptance Low (-50%)	Acceptance High (+150%)	
Congener Number	Co-eluting Pairs	Cl Level*	ng/k	g dry we	Co-eluting Sets		
74	2,4,4',5-Tetrachlorobiphenyl	4					
76	2,3',4',5'-Tetrachlorobiphenyl	4	0054	540.0	4000	4077	
83	2,2',3,3',5-Pentachlorobiphenyl	5					
99	2,2',4,4',5-Pentachlorobiphenyl	5	2548	373.6	1274	3821	83/99
85	2,2',3,4,4'-Pentachlorobiphenyl	5					
116	2,3,4,5,6-Pentachlorobiphenyl	5					
117	2,3,4',5,6-Pentachlorobiphenyl	5	737	29.5	368	1105	85/116/117
86	2,2',3,4,5-Pentachlorobiphenyl	5					
87	2,2',3,4,5'-Pentachlorobiphenyl	5					
97	2,2',3,4',5'-Pentachlorobiphenyl	5					
108	2,3,3',4,5'-Pentachlorobiphenyl	5					
119	2,3',4,4',6-Pentachlorobiphenyl	5					
125	2,3',4',5',6-Pentachlorobiphenyl	5	3337	142.6	1668	5005	86/87/97/108/119/125
88	2,2',3,4,6-Pentachlorobiphenyl	5					
91	2,2',3,4',6-Pentachlorobiphenyl	5	674	49.9	337	1011	88/91
90	2,2',3,4',5-Pentachlorobiphenyl	5					
101	2,2',4,5,5'-Pentachlorobiphenyl	5					
113	2,3,3',5',6-Pentachlorobiphenyl	5	6957	787.6	3478	10435	90/101/113
93	2,2',3,5,6-Pentachlorobiphenyl	5					
95	2,2',3,5',6-Pentachlorobiphenyl	5					
98	2,2',3,4',6'-Pentachlorobiphenyl	5					
100	2,2',4,4',6-Pentachlorobiphenyl	5					
102	2,2',4,5,6'-Pentachlorobiphenyl	5	5608	516.7	2804	8412	93/95/98/100/102
107	2,3,3',4',5-Pentachlorobiphenyl	5					
124	2,3',4',5,5'-Pentachlorobiphenyl	5	249	105.2	124	373	107/124
110	2,3,3',4',6-Pentachlorobiphenyl	5					
115	2,3,4,4',6-Pentachlorobiphenyl	5	6488	384.7	3244	9733	110/115
128	2,2',3,3',4,4'-Hexachlorobiphenyl	6					
166	2,3,4,4',5,6-Hexachlorobiphenyl	6	1354	167.1	677	2031	128/166
129	2,2',3,3',4,5-Hexachlorobiphenyl	6					
138	2,2',3,4,4',5'-Hexachlorobiphenyl	6					
160	2,3,3',4,5,6-Hexachlorobiphenyl	6					
163	2,3,3',4',5,6-Hexachlorobiphenyl	6	14189	1183.2	7094	21283	129/138/160/163
134	2,2',3,3',5,6-Hexachlorobiphenyl	6					
143	2,2',3,4,5,6'-Hexachlorobiphenyl	6	657	45.0	329	986	134/143
135	2,2',3,3',5,6'-Hexachlorobiphenyl	6					
151	2,2',3,5,5',6-Hexachlorobiphenyl	6					
154	2,2',4,4',5,6'-Hexachlorobiphenyl	6	6326	374.1	3163	9488	135/151/154
139	2,2',3,4,4',6-Hexachlorobiphenyl	6					
140	2,2',3,4,4',6'-Hexachlorobiphenyl	6	115	18.7	58	173	139/140
147	2,2',3,4',5,6-Hexachlorobiphenyl	6					
149	2,2',3,4',5',6-Hexachlorobiphenyl	6	14314	1582.6	7157	21471	147/149

			Avg	SD	Acceptance Low (-50%)	Acceptance High (+150%)	
Congener Number	Co-eluting Pairs	Cl Level*	ng/kg	g dry we	Co-eluting Sets		
153	2,2',4,4',5,5'-Hexachlorobiphenyl	6					
168	2,3',4,4',5',6-Hexachlorobiphenyl	6	13913	1343.2	6956	20869	153/168
156	2,3,3',4,4',5-Hexachlorobiphenyl	6					
157	2,3,3',4,4',5'-Hexachlorobiphenyl	6	891	52.1	446	1337	156/157
171	2,2',3,3',4,4',6-Heptachlorobiphenyl	7					
173	2,2',3,3',4,5,6-Heptachlorobiphenyl	7	1794	202.8	897	2691	171/173
180	2,2',3,4,4',5,5'-Heptachlorobiphenyl	7					
193	2,3,3',4',5,5',6-Heptachlorobiphenyl	7	12396	1530.7	6198	18594	180/193
183	2,2',3,4,4',5',6-Heptachlorobiphenyl	7					
185	2,2',3,4,5,5',6-Heptachlorobiphenyl	7	4184	665.7	2092	6277	183/185
197	2,2',3,3',4,4',6,6'-Octachlorobiphenyl	8					
200	2,2',3,3',4,5,6,6'-Octachlorobiphenyl	8	496	106.0	248	744	197/200
198	2,2',3,3',4,5,5',6-Octachlorobiphenyl	8					
199	2,2',3,3',4,5,5',6'-Octachlorobiphenyl	8	3260	626.4	1630	4890	198/199

* number of chlorine substituents