Appendix A
Monitoring Equipment Photographs
Photograph A1
Groundwater Monitoring Piezometer Installation at a Groundwater Monitoring Location Using Geoprobe Drilling Rig

Note: New groundwater piezometers were installed at Sites 007, 004, and 086.
Photograph A2
Groundwater Monitoring Piezometer Well Development Via Surging, Bailing, and/or Pumping
Photograph A3
Completed Groundwater Monitoring Piezometer with Cover Removed Showing In-Situ Rugged Troll 200 Data Logger Cable and Coupler
Photograph A4
Completed Groundwater Monitoring Piezometer with Cover Installed
Photograph A5
Perforated Galvanized Steel Pipe and Drive Point Used to Construct the Stilling Wells at the River Monitoring Locations and Oxbow Pond Monitoring Locations
Photograph A6
Typical Stilling Well Installation at a River Monitoring Location Along the Chehalis River

Note: A monitoring location benchmark is visible in the foreground.
Photograph A7
A River Monitoring Location Stilling Well as Viewed from the Chehalis River

RML stilling well along river bank.

06/27/2017
Photograph A8
Data Collection at a River Monitoring Location

Note: Data logger cable from stilling well is pulled out of well riser and connected to a Rugged Reader portable field computer. Survey equipment for manually measuring water elevation in river is shown at the right.
Photograph A9
Typical Monitoring Setup at an Oxbow Monitoring Location

In-Situ Rugged Troll 200 Data Logger (goes inside stilling well pipe)
Perforated galvanized steel stilling well pipe
Rugged Troll coupler
Cable buoys
Rugged Troll Cable
HOBO Pro v2 Temperature Data Logger (stays outside well pipe)
Stilling well drive point driven into ground
HOBO buoys

Note: Two Oxbow Monitoring Locations were installed at each monitoring site.
Photograph A11
Typical Installation of an In-Situ BaroTroll Barometric Pressure Data Logger

In-Situ BaroTroll logger installed on fencepost

Note: These were installed at Sites 007, 004, 068, and 086.
Photograph A12
River Flow Measurement Using an Acoustic Doppler Current Profiler Mounted on a Small Boat
Site 007 - Groundwater Well Log

Please print, sign and return to the Department of Ecology

RESOURCE PROTECTION WELL REPORT
(SUBMIT ONE WELL REPORT PER WELL INSTALLED)

Construction/Decommission ("x" in box) 303-16-11 92

- Construction
- Decommission

ORIGINAL INSTALLATION Notice of Intent Number:

Consulting Firm: Anchor QEA, LLC
Unique Ecology Well ID Tag No.: BHV-137

WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Washington well construction standards. Materials used and the information reported above are true to my best knowledge and belief.

Driller □ Engineer □ Trainee
Name (Print Last, First Name): King, Kyle
Driller/Engineer/Trainee Signature:...
Driller or Trainee License No.: 3220

If trainee, licensed driller’s Signature and License Number:

<table>
<thead>
<tr>
<th>Construction Design</th>
<th>Well Data</th>
<th>Formation Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1 ft 8” flush monument set in concrete</td>
<td>5004-GML</td>
<td>0 - 8.5 ft Silty and Some Gravel</td>
</tr>
<tr>
<td>0.5 - 11 ft 2” PVC riser</td>
<td>2” piezometer well to 21 ft.</td>
<td>8.5 - 21 ft Sandy Gravel</td>
</tr>
<tr>
<td>11 - 21 ft 2” PVC prepack screen threaded, 0.001 slot</td>
<td>Borehole diameter: 4”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8” flush monument: 0 - 1 ft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bentonite Seal: 1 - 10 ft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filter Pack: 10 - 21 ft.</td>
<td></td>
</tr>
</tbody>
</table>

SCALE: 1” = ____ PAGE ____ OF ____

Site 004 - Groundwater Well Log

Please print, sign and return to the Department of Ecology

RESOURCE PROTECTION WELL REPORT
(SUBMIT ONE WELL REPORT PER WELL INSTALLED)

Construction/Decommission ("x" in box) 303-16-1192

- Construction
- Decommission

ORIGINAL INSTALLATION Notice of Intent Number:

Consulting Firm Anchor QEA, LLC

Unique Ecology Well IDTag No. BHV-136

WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Washington well construction standards. Materials used and the information reported above are true to my best knowledge and belief.

Driller □ Engineer □ Trainee

Name (Print Last, First Name) King, Kyle

Driller/Engineer/Trainee Signature

Driller or Trainee License No. 3220

If trainee, licensed driller’s Signature and License Number:

<table>
<thead>
<tr>
<th>Construction Design</th>
<th>Well Data</th>
<th>Formation Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 1 ft 8" flush monument set in concrete</td>
<td>5007-GML</td>
<td>0 - 8 ft Silty Gravel</td>
</tr>
<tr>
<td>0.5 - 17.5 ft 2" PVC riser</td>
<td>2" piezometer well to 23 ft.</td>
<td>8 - 23 ft Sandy Gravel</td>
</tr>
<tr>
<td>17.5 - 22.5 ft 2" PVC prepack screen threaded, 0.001 slot</td>
<td>8" flush monument: 0 - 1 ft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bentonite Seal: 1 - 16.5 ft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filter Pack: 16.5 - 23 ft.</td>
<td></td>
</tr>
</tbody>
</table>

SCALE: 1" = PAGE ___ OF ___

RECEIVED

OCT 2 5 2016

WA State Department of Ecology (SWRO)
Site 068 - Groundwater Well Log

HOLT DRILLING, INC.

Resource Protection Well Report

Project Name: Chehalis Facility Plan

Well Identification #: MW-3/Tag#: AB0432

Drilling Method: 4" ASA

Driller: Michael Reynolds

License #: 2442

Date: 10-4-01

County: Lewis

Section: 36

T: 13IV

R: 3W

Street Address: Farm Fields off of Hwy 6

Start Card #: AS5192

Consulting Firm: Robinson & Noble

AS-BUILT

WELL DATA

FORMATION DESCRIPTION

- MONUMENT TYPE: 6"Stick-Up 2.5' Above Ground
- CONCRETE SURFACE SEAL: 1.5 ft.
- PVC BLANK: 2" x 19.5'
- BACKFILL: 13.5 ft.
 - TYPE: Bentonite
- PVC SCREEN: 2" x 10'
 - SLOT SIZE: 0.20
 - TYPE: PVC
- GRAVEL PACK: 12 ft.
 - MATERIAL: 10/20 Silica
- WELL DEPTH: 27.0 ft.

FORMATION DESCRIPTION

0 - 20 ft.
 - Gravel, Silty Fine Sand

20 - 27 ft.
 - Bm., Hfd. Sand w/Scattered Sm Gravels

REMARKS

3-3"x7' Steel

Hollards placed a concreted around monument

RECEIVED

--- NOV 14 2001

Washington State
Department of Ecology

Signature: [Signature]

The Department of Ecology does NOT Warranty the Data and/or the Information on this Report.
Please print, sign and return to the Department of Ecology

 RESOURCE PROTECTION WELL REPORT
(SUBMIT ONE WELL REPORT PER WELL INSTALLED)

Construction/Decommission ("x" in box) 303-16-1192
- Construction
- Decommission

ORIGINAL INSTALLATION Notice of Intent Number:

Consulting Firm: Anchor QEA, LLC
Unique Ecology Well IDTag No. B_HV143

WELL CONSTRUCTION CERTIFICATION: I constructed and/or accept responsibility for construction of this well, and its compliance with all Washington well construction standards. Materials used and the information reported are true to my best knowledge and belief.

Driller □ Engineer □ Trainee

Name (Print Last, First Name) King, Kyle

Driller/Engineer/Trainee Signature

Driller or Trainee License No. 3220

| trainee, licensed driller's Signature and License Number: |

<table>
<thead>
<tr>
<th>Construction Design</th>
<th>Well Data</th>
<th>Formation Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 2 ft 8" flush monument set in concrete</td>
<td>5086-GML</td>
<td>0 - 10 ft Silt</td>
</tr>
<tr>
<td>0 - 15 ft 2" PVC riser</td>
<td>2" piezometer well to 25 ft.</td>
<td>10 - 13.5 ft Silty Sand</td>
</tr>
<tr>
<td>15 - 25 ft 2" PVC prepack screen threaded, 0.001 slot</td>
<td>Borehole diameter: 4"</td>
<td>13.5 - 25 ft Gray Sand/River Rock</td>
</tr>
<tr>
<td></td>
<td>8" flush monument: 0 - 1 ft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bentonite Seal: 2 - 12.5 ft.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filter Pack: 12.5 - 25 ft.</td>
<td></td>
</tr>
</tbody>
</table>

| SCALE: 1" = | PAGE = OF |

Site Address 5993 US Hwy. 12
City Oakville County Grays Harbor
Location SW_1/4-1/4 SW_1/4 Sec 34 Twn 17N R 5W
EWM □ or WWM □
Lat/Long (s, t, r)
Lat Deg _____ Min _____ Sec _____
Long Deg _____ Min _____ Sec _____

Property Owner Washington Dept. of Fish and Wildlife

Site 086 - Groundwater Well Log

Scale: 1" = ____ PAGE ____ OF ____

Appendix C
Water Elevation Graphs
Figure C-1. Site 007 Water Elevations and Rainfall Amounts

- S007-GML Groundwater Elevation
- S007-OML1 Surface Water Elevation
- S007-OML2 Surface Water Elevation
- Rainfall Amount - Chehalis Station
Figure C-2a. Site 004 Water Elevations and Rainfall Amounts

- S004-GML Groundwater Elevation
- S004-OML1 Surface Water Elevation
- S004-OML2 Surface Water Elevation
- S004-RML1 River Elevation (upstream)
- S004-RML2 River Elevation (downstream)
- Rainfall Amount - Chehalis Station

- S004-RML2 - 7/28/16 to 11/1/16 - faulty transducer - no data
- S004-RML2 destroyed from 6/28/2017 to 10/25/2017 - no data
- S004-RML1 destroyed from 1/31/2017 to 3/29/2017 - no data
- S004-RML2 destroyed from 11/13/2017 to 2/14/2018 - no data
- Bottom section of S004-RML2 broken off from 4/19/18 to 5/23/18 - data unusable
Figure C-2b. Site 004 Water Elevations and Rainfall Amounts - November 2016 to December 2016

- S004-GML Groundwater Elevation
- S004-OML1 Surface Water Elevation
- S004-OML2 Surface Water Elevation
- S004-RML1 River Elevation (upstream)
- S004-RML2 River Elevation (downstream)
- Rainfall Amount - Chehalis Station
Figure C-2c. Site 004 Water Elevations and Rainfall Amounts - October 2017 to November 2017

S004-RML2 - 7/28/16 to 11/1/16 - faulty transducer - no data
S004-RML2 destroyed from 6/28/2017 to 10/25/2017 - no data
S004-RML1 destroyed from 1/31/2017 to 3/29/2017 - no data
S004-RML2 destroyed from 11/13/2017 to 2/14/2018 - no data
Bottom section of S004-RML2 broken off from 4/19/18 to 5/23/18 - data unusable

Rainfall Amounts (inches per 15‐minute interval)

Date
October 1, 2017
October 15, 2017
October 29, 2017
November 12, 2017
November 26, 2017

Elevation (feet NAVD88)
0.0
0.1
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

220.0
225.0 230.0
235.0
240.0 245.0
250.0
255.0
260.0

S004-GML Groundwater Elevation
S004-OML1 Surface Water Elevation
S004-OML2 Surface Water Elevation
S004-RML1 River Elevation (upstream)
S004-RML2 River Elevation (downstream)
Rainfall Amount - Chehalis Station
Figure C-2d. Site 004 Water Elevations and Rainfall Amounts - January 2018 to February 2018

- S004-GML Groundwater Elevation
- S004-OML1 Surface Water Elevation
- S004-OML2 Surface Water Elevation
- S004-RML1 River Elevation (upstream)
- S004-RML2 River Elevation (downstream)
- Rainfall Amount - Chehalis Station

S004-RML2 destroyed from 11/13/2017 to 2/14/2018 - no data
Figure C-3a. Site 068 Water Elevations and Rainfall Amounts
Figure C-3c. Site 068 Water Elevations and Rainfall Amounts - February 2017

- S068/020-RML2 River Elevation (downstream)
- S068-GML Groundwater Elevation
- S068-OML1 Surface Water Elevation
- S068-OML2 Surface Water Elevation
- S068/020-RML1 River Elevation (upstream)
- Rainfall Amount - Chehalis Station
Figure C-3d. Site 068 Water Elevations and Rainfall Amounts - November 2017 to December 2017

- S068/020-RML2 River Elevation (downstream)
- S068-GML Groundwater Elevation
- S068-OML1 Surface Water Elevation
- S068-OML2 Surface Water Elevation
- Rainfall Amount - Chehalis Station
Figure C-4a. Site 020 Water Elevations and Rainfall Amounts

- **S020-GML Groundwater Elevation**
- **S020-OML1 Surface Water Elevation**
- **S020-OML2 Surface Water Elevation**
- **S020/068-RML1 River Elevation (upstream)**
- **S020/068-RML2 River Elevation (downstream)**
- **Rainfall Amount - Chehalis Station**
Figure C-4b. Site 020 Water Elevations and Rainfall Amounts - October 2016 to March 2017

S020-GML Groundwater Elevation
S020-OML1 Surface Water Elevation
S020-OML2 Surface Water Elevation
S020/068-RML1 River Elevation (upstream)
S020/068-RML2 River Elevation (downstream)
Rainfall Amount - Chehalis Station
Figure C-4c. Site 020 Water Elevations and Rainfall Amounts - October 2017 to March 2018

- S020-GML Groundwater Elevation
- S020-OML1 Surface Water Elevation
- S020-OML2 Surface Water Elevation
- S020/068-RML1 River Elevation (upstream)
- S020/068-RML2 River Elevation (downstream)
- Rainfall Amount - Chehalis Station

Date:
- Oct‐17
- Nov‐17
- Dec‐17
- Jan‐18
- Feb‐18

Rainfall Amount (inches per 15‐minute interval)
Elevation (feet NAVD88)
Figure C-4d. Site 020 Water Elevations and Rainfall Amounts - November 2017 to February 2018
Figure C-5a. Site 086 Water Elevations and Rainfall Amounts

- S086-GML Groundwater Elevation
- OML1 Surface Water Elevation
- OML2 Surface Water Elevation
- RML1 River Elevation (downstream)
- RML2 River Elevation (upstream)
- Rainfall Amount - Montesano Station

Date:
- Jun-16
- Aug-16
- Nov-16
- Feb-17
- May-17
- Aug-17
- Nov-17
- Feb-18
- May-18

Rainfall Amount (inches per 15 minute interval) vs. Elevation (feet NAVD88)
Figure C-5b. Site 086 Water Elevations and Rainfall Amounts - October 2016 to November 2016

- S086-GML Groundwater Elevation
- OML1 Surface Water Elevation
- RML1 River Elevation (downstream)
- OML2 Surface Water Elevation
- RML2 River Elevation (upstream)
- Rainfall Amount - Montesano Station
Appendix D
Temperature Graphs
Figure D-1a. Site 007 Water Temperatures and Daily High and Low Temperatures

- S007-GML Groundwater Temperature
- S007-OML1 Mudline Temperature
- S007-OML2 Mudline Temperature
- S007-OML1 Surface Water Temperature
- S007-OML2 Surface Water Temperature
- Daily High Air Temperature - Chehalis Station
- Daily Low Air Temperature - Chehalis Station
Figure D-1b. Site 007 Mudline Temperatures and Daily High and Low Temperatures

- S007-OML1 Mudline Temperature
- S007-OML2 Mudline Temperature
- Daily High Air Temperature - Chehalis Station
- Daily Low Air Temperature - Chehalis Station
Figure D-2a. Site 004 Water Temperatures and Daily High and Low Temperatures

- **S004-GML** Groundwater Temperature
- **S004-OML1** Mudline Temperature
- **S004-OML2** Mudline Temperature
- **S004-OML1** Surface Water Temperature
- **S004-OML2** Surface Water Temperature
- **S004-RML1** River Temperature (upstream)
- **S004-RML2** River Temperature (downstream)
- **Daily High Air Temperature - Chehalis Station**
- **Daily Low Air Temperature - Chehalis Station**

- **S004-RML2** - 7/28/16 to 11/1/16 - faulty transducer - no data.
- **S004-RML2** destroyed from 6/28/2017 to 10/25/2017 - no data.
- **S004-RML1** destroyed from 1/31/2017 to 3/29/2017 - no data.
- **S004-OML1** hobo out of water from 2/2/18 to 2/14/18 - stuck on tree
Figure D-2b. Site 004 Mudline Temperatures and Daily High and Low Temperatures

- S004-OML1 Mudline Temperature
- S004-OML2 Mudline Temperature
- Daily High Air Temperature - Chehalis Station
- Daily Low Air Temperature - Chehalis Station
Figure D-3a. Site 068 Water Temperatures and Daily High and Low Temperatures
Figure D-3b. Site 068 Mudline Temperatures and Daily High and Low Temperatures
Figure D-4a. Site 020 Water Temperatures and Daily High and Low Temperatures

- S020-GML Groundwater Temperature
- S020-OML1 Mudline Temperature
- S020-OML2 Mudline Temperature
- S020-OML1 Surface Water Temperature
- S020-OML2 Surface Water Temperature
- S020-RML1 River Temperature (upstream)
- S020-RML2 River Temperature (downstream)
- Daily Low Air Temperature - Chehalis Station
- Daily High Air Temperature - Chehalis Station
Figure D-4b. Site 020 Mudline Temperature and Daily High and Low Temperatures

S020-OML2 dry from 6/27/2016 to
Figure D-5a. Site 086 Water Temperatures and Daily High and Low Temperatures
Figure D-5b. Site 086 Mudline Temperatures and Daily High and Low Temperatures

- S086-OML1 Mudline Temperature
- S086-OML2 Mudline Temperature
- Daily High Air Temperature - Montesano Station
- Daily Low Air Temperature - Montesano Station
Appendix E
Chehalis River Gaining and Losing Reach Map
Figure 4. Discharge gains and losses in reaches along the Chehalis River, Washington.
Appendix F
Acoustic Doppler Current Profiler Flow Survey Results
Table F-1
Chehalis River Acoustic Doppler Current Profiler Discharge Measurements and Water Level Elevations on April 24, 2017

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>TRANSECT ID</th>
<th>DATE</th>
<th>TIME</th>
<th>TOTAL DISCHARGE (CFS)</th>
<th>TOTAL DISCHARGE DIFFERENCE FROM AVERAGE</th>
<th>AVERAGE DISCHARGE (CFS)</th>
<th>FLOW SPEED (FEET PER SECOND)</th>
<th>FLOW SPEED DIFFERENCE FROM AVERAGE</th>
<th>AVERAGE FLOW SPEED (FEET PER SECOND)</th>
<th>TIME</th>
<th>WATER LEVEL AT SITES 020 AND 068 AND RML2 (UPSTREAM) FEET (NAVD88)</th>
<th>WATER LEVEL AT SITES 020 AND 068 AND RML1 (DOWNSTREAM) FEET (NAVD88)</th>
<th>ADNA GAGE (NO. 12021800)</th>
<th>TOTAL DISCHARGE (CFS)</th>
<th>AVERAGE DISCHARGE (CFS)</th>
<th>AVERAGE DISCHARGE DIFFERENCE BETWEEN TRANSECTS AND GAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central transects between Sites 020 and 068</td>
<td>2003</td>
<td>4/24/2017</td>
<td>11:23</td>
<td>1,851</td>
<td>101%</td>
<td>1,830</td>
<td>2.21</td>
<td>99%</td>
<td>2.24</td>
<td>11:30</td>
<td>161.51</td>
<td>161.37</td>
<td>196.10</td>
<td>1,800</td>
<td>1,817</td>
<td>101%</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td></td>
<td>11:27</td>
<td>1,803</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td></td>
<td>11:32</td>
<td>1,855</td>
<td>101%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td></td>
<td>11:37</td>
<td>1,774</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td></td>
<td>11:41</td>
<td>1,881</td>
<td>103%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td></td>
<td>11:46</td>
<td>1,824</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2010</td>
<td></td>
<td>11:55</td>
<td>1,823</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Downstream transects between Sites 020 and 068</td>
<td>4000</td>
<td>4/24/2017</td>
<td>12:38</td>
<td>1,907</td>
<td>100%</td>
<td>1,905</td>
<td>2.30</td>
<td>99%</td>
<td>2.33</td>
<td>12:45</td>
<td>161.68</td>
<td>161.56</td>
<td>196.14</td>
<td>1,830</td>
<td>1,857</td>
<td>103%</td>
</tr>
<tr>
<td></td>
<td>4001</td>
<td></td>
<td>12:43</td>
<td>1,859</td>
<td>98%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4002</td>
<td></td>
<td>12:47</td>
<td>1,928</td>
<td>101%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4003</td>
<td></td>
<td>12:55</td>
<td>1,876</td>
<td>98%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4004</td>
<td></td>
<td>13:00</td>
<td>1,937</td>
<td>102%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4006</td>
<td></td>
<td>13:08</td>
<td>1,925</td>
<td>101%</td>
<td></td>
</tr>
<tr>
<td>Washington Route 603 bridge transects</td>
<td>5000</td>
<td>4/24/2017</td>
<td>15:38</td>
<td>2,119</td>
<td>102%</td>
<td>2,084</td>
<td>2.22</td>
<td>105%</td>
<td>2.12</td>
<td>15:45</td>
<td>162.30</td>
<td>161.89</td>
<td>196.41</td>
<td>2,080</td>
<td>2,120</td>
<td>98%</td>
</tr>
<tr>
<td></td>
<td>5003</td>
<td></td>
<td>15:55</td>
<td>2,012</td>
<td>97%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5004</td>
<td></td>
<td>15:58</td>
<td>2,143</td>
<td>103%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5006</td>
<td></td>
<td>16:05</td>
<td>2,046</td>
<td>98%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5007</td>
<td></td>
<td>16:09</td>
<td>2,061</td>
<td>99%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5008</td>
<td></td>
<td>16:13</td>
<td>2,123</td>
<td>102%</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
*Conversion from the gage’s native datum (NVGD29) to North American Vertical Datum of 1988 (NAVD88) is +3.40 feet: https://www.ngs.noaa.gov/cgi-bin/VERTCON/vert_con.prl